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ABSTRACT: Any prime number ‘m’ obeys the Fermat property with respect to any number ‘a’ which is prime to m. But if m is composite it 

may be or may not be true. The composite numbers that obey Fermat property can be said as Fermat’s composite number or simply FC 

Numbers. This paper contains some natures of so called FC numbers. The existence of such numbers was first detected by the American 

mathematician Carmichael in 1809. So far divisibility is concerned a prime number possesses several properties out of which we can recall the 

famous property of Wilson’s theorem i.e. p divides (p – 1)! + 1. The proof of this theorem given by the great mathematician Lagrange also 

indicates some other divisibility properties of a prime which have been lying hidden to the proof itself and never day-lighted. My paper contains 

the proof of those hidden properties along with the fact that Wilson theorem is a particular case of a general property. My paper also contains 

an important theorem regarding divisibility of twin primes.  

 
INTRODUCTION:  Before we investigate the nature of a FC-number and to extract some properties of a prime it is felt necessary to indicate 

the meanings of some usual notations and to highlight one useful common theorem. 

∏(pi) denotes the product sequence of odd primes i.e. p1p2p3…… 

[xi ,] denotes the LCM of x1, x2, x3, ….. 

(xi ,) denotes the GCF of x1, x2, x3, ….. 

If x + y = z where (x, y) = 1 then obviously (x, z) = (y, z) = 1 

For a number N = 2n.pn1pn2pn3…… Degree of Intensity (DOI) with respect to any base prime is defined as DOI(N)2 = n or symbolically ↑(N)2 = n, 

↑(N)p1 = n1,↑(N)p2 = n2  and so on. 

Obviously, for an odd integer ↑(N)2 = 0 

If N is an odd integer of 1st kind i.e. in the form of 4x – 1, ↑(N – 1)2 = 1 & for 2nd kind i.e. 4x + 1 form  ↑(N – 1)2 > 1. 

a│b is the symbol for a divides b. 

 
KEY WORDS: FC-number, Degree of intensity (DOI) 

 
1.   Any FC-number is a product sequence of odd primes only i.e. ∏(pi) 

 
According to Fermat Theorem am – 1 ≡ 1 (mod m) where m is prime & (a, m) = 1. When m is composite it may be 

or may not be true.  For a composite number m = p1α1p2α2p3α3…….. it will obey the Fermat’s property if and only 

if m – λ[φ(p1α1), φ(p2α2), φ(p3α3), ………] = 1 where λ is any positive integer & φ(xb) = xb – xb – 1.  The proof can be 

easily understood by an example given below. 

1105 = 5.13.17 Let a be any integer relatively prime to 1105.  

Then by Fermat’s theorem a4 ≡ 1 (mod 5), a12 ≡ 1 (mod 13), a16 ≡ 1 (mod 17) 

This implies a[4, 12, 16] ≡ 1 (mod [5, 13, 17]) i.e. a48 ≡ 1 (mod 1105) & raising both sides to the power 23 we have  

a1104 ≡ 1 (mod 1105) i.e. am – 1 ≡ 1 (mod m) where m is composite. 

 (p1α1p2α2p3α3……..)  – λ[φ(p1α1), φ(p2α2), φ(p3α3), ………] = 1 

 (p1α1p2α2p3α3……..)  – λ(p1α1 – 1. p2α2 – 1. p3α3 – 1   ……..) [(p1 – 1), (p2 – 1), (p3 – 1), ……. ] = 1 

 (p1α1 – 1. p2α2 – 1. p3α3 – 1   ……..){ (p1p2p3 ……) – λ[(p1 – 1), (p2 – 1), (p3 – 1), ……. ]} = 1 which is quite impossible 

unless all αi = 1. Hence, proved that all FC-numbers are the product of primes only  
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2. The composite numbers which are the product of twin primes cannot be FC-numbers  

i.e.  ap(p + 2) – 1≢ 1 (mod p(p + 2) where p & (p + 2) both are primes & (a, p) = 1 = (a, p + 2) 

Here, m = p(p + 2) & a [p – 1, p + 1] ≡ 1 (mod m)  

This implies p(p + 2) – λ.(p – 1)/2.(p + 1)/2 = 1 this implies (2 – λ)p2 + 4p + (λ – 1) = 0 

Obviously, λ  < 2 & m has no existence.  

 

3.      For a FC-number N = ∏(Pi) where i ≥ 3, ↑(pi – 1)x cannot be all different.  

 

If all ↑(pi – 1)x are different with respect to any base x, say min{↑(pi – 1)x} = n and max{↑(pi – 1)x} = m 
 λ is in the form of xn{d1 + xrd2)/xmd3 where all d are some integers free from x. 
 λ cannot be integer as n < m. 
 
4.        For a FC-number N = ∏(Pi) where i ≥ 3, if min{↑(pi – 1)2} = n & max{↑(pi – 1)2} = m then n must be 
repeated even number of times irrespective of the fact that other DOI of 2 is repeated or not. For odd 
numbers of repetitions of n, FC-number cannot exist. 
  
This is simply because of the following fact. 
Say, v1 + v2 = v3 where v denotes even integers. 
If ↑(v1)2 = ↑(v2)2 = x then ↑(v3)2 > x and if ↑(v1)2 < ↑(v2)2 then ↑(v3)2 = ↑(v1)2 
If ↑(vi)2 = x for i = 1, 2, 3, …. then ↑(∑vi) = x where i = 1, 2, 3, …… (2r – 1) & > x where i = 1, 2, 3, …., 2r. 
Now, if n is repeated odd nos. of times then numerator of λ contains single term as minimum DOI of 2 i.e. n. 
As a result , λ is in the form of 2nd1/2md2 for some integers of d1 & d2 where n < m.  
 λ cannot be an integer. 
But if n is repeated even nos. of times n may go on increasing by chain rule with other DOI and as a result we 
may get λ in the form of 2rd1 / 2md2 where r ≥ m  λ is an integer & FC-number is a product of at least 3 primes. 
 

5.     If p is an odd prime then 

5.1   p │ ∑xm where x = 1, 2, 3, ……, p – 1 & m ≠ k(p – 1) 

5.2   p │ ∑xm where x = product of integers among  1, 2,……, p – 1 taken two at a time for 2m ≠ k(p – 1) 

5.3   p │ ∑ xp where x = product of integers among  1, 2, 3, ……, p – 1 taken r at a time & r < p – 1 

5.4   p │ ∑xm where x = product of integers among  1, 2,……, p – 1 taken (P – 2) at a time & m ≠ k(p – 1) 

 5.5  p │ ∑xm where x = product of integers among  1, 2,……, p – 1 taken (P – 3) at a time & 2m ≠ k(p – 1) 

 

Say, f(x) = (x – 1)(x – 2)(x – 3)……..(x – p + 1) = xp – 1 – a1xp – 2 + a2xp – 3 – ……… – ap – 2 x + (p – 1)! 

Where ar denotes the sum of the product among 1, 2, 3, ….., p – 1 taken r at a time for r < p – 1 & according to 

Lagrange theorem p │ all (ai) 

Now, by logarithmic differentiation, 

f/(x) / f(x) = (x – 1) – 1 + (x – 2) – 1 + (x – 3) – 1 + …….. + (x – p + 1) – 1  

                  = {(p – 1)xp – 2 – a1(p – 2)xp – 3 + ……… – ap – 2 }/f(x) 

 (∑α0)x – 1 +  (∑α1)x – 2 +  (∑α2)x – 3 + ……. +  (∑αm)x – (m + 1) + …….. where α varies from 1 to (p – 1) = 

(p – 1)x – 1 + b1x– 2 + b2x – 3 + ………. + bmx – (m + 1) + ……. By algebraic division of f/(x) / f(x)  

Here, all the coefficients of b are the expression of ‘a’ not containing any free constant excepting the cases 

where m is multiple of (p – 1) i.e. m ≠ k(p – 1). By algebraic division it can be easily observed. 

Hence, in all other cases p│ bi   p │ bm & equating the coefficients on both sides we can say, 

P │1m + 2m + 3m + …… + (p – 1)m i.e. p │ ∑xm where x = 1, 2, 3, ……, p – 1 for m ≠ k(p – 1) 

Now, squaring both sides p │ (∑x2m + 2 ∑ym) where y is the product among 1, 2, 3, ….., (p – 1) taken two at a 

time.  p │∑ym as (∑x2m is divisible by p for 2m ≠ k( p – 1) and hence proved 6.2 

Now, p │ ar i.e. p │∑ xr say, p │ (c1 + c2 + c3 + …..) where c is the product of r different integers. 

 p │(c1 + c2 + c3 + …..)p   p │ (c1p + c2p + c3p + ……) + K multiple of p. 
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 p │ (c1p + c2p + c3p + ……)  p │ ∑xp where x is the product of r different integers & r < (p – 1) 

Hence, proved 5.3 

Replacing x by 1/x we have, f(x) = (p – 1)!xp – 1 – ap – 2xp – 2 + ap – 3xp – 3 – ……… + a2x2 – a1x + 1 where roots of the 

equation f(x) = 0 are 1, 1/2, 1/3,……., 1/(p – 1) 

Now, considering the same logics on f/(x) / f(x) we can say, 

P │ Numerator of {1/1m + 1/2m + 1/3m + ……. + 1/(p – 1)m} for m ≠ k(p – 1) 

 p │ ∑xm where x is the product of (p – 2) integers at a time. 

Again, P │ Numerator of {1/1m + 1/2m + 1/3m + ……. + 1/(p – 1)m}2  

 P │ Nr of { ∑x2m + 2∑ym} where x = 1, ½, 1/3, ……, 1/(p – 1) & y is the product of two fractions at a time. 

 p │ ∑ym for 2m ≠ k(p – 1)  p │ Nr of  ∑ym  p │ ∑xm where x is the product taken (p – 3) integers at a time 

for 2m ≠ k(p – 1) and hence proved. 

 

Note for shifting phenomenon:  above mentioned all the theorems are also true if the original set 1, 2, 3, ….., p 

– 1 is replaced by 1.μ + pλ, 2.μ + pλ, 3.μ + pλ, …….., (p – 1).μ + pλ where λ, μ are positive integers. It happens 

due to same logics applied in f/(x/μ – pλ)/ f(x/μ – pλ) where roots of the equation f(x) = 0 have been increased 

by μ times & then added by pλ in the equation f(x/μ – pλ) = 0. 

e.g.  for m ≠ 10k, 11│ 1m + 2m + 3m + ……… + 10m considering μ = 1 & λ = 0, 12m + 13m + 14m + ……… + 21m 

considering μ = 1 & λ = 1, 25m + 28m + 31m + ……… + 52m for μ = 3, λ = 2 & so on. 

Against any two fixed integers λ & μ and with respect to any odd prime p the set of integers pλ ± xμ where x 

varies from 1 to (p – 1) will satisfy all the said theorems and also the Lagrange coefficients. All the sets under 

this particular class are the complete reduced system of (mod p) while (1, 2, 3, ……, p – 1 ) is the least residue 

of (mod p). 

                                                              x = p - 1 

Hence, in general,  p│∏( pλ + xμ) + μp – 1 & for a particular case where μ = 1 & λ = 0, p│(p – 1)! + 1 which  
                                                                 x = 1 

is known as Wilson’s theorem. It is obtained simply by putting x = μ in the identity of f(x) after replacement of 

all the roots by pλ + xμ. It is observed LH side is divisible by p & RH side is partially divisible by p. non-

divisible part on RH side is ∏( pλ + xμ) + μp – 1 where x varies from 1 to p – 1. Hence, non-divisible part must be 

divisible by p. 

If (μ, p) = 1 then obviously p│∏ (pλ ± xμ) + 1 according to Fermat property and after multiplication all the 

factors p│μp – 1(p – 1)! + 1 

 p│(μ1p – 1 + μ2p – 1 + μ3p – 1 + ……. p terms).(p – 1)! where (μi, p) = 1  

                  p                                                              p 

 p│(∑μip – 1 )(p – 1)!   p│∑(μip – 1 ) 
                 i = 1                                                         i = 1 

In view of the above we can establish one important theorem given below. 

                                                                                                                                                  p + 1 

6.       If p & p + 2 are twin primes then p(p + 2)│∑ xp – 1  
                                                                                                                                                   x = 1 

It is quite obvious that if p + 2 is a prime then (p + 2)│ ∑xp – 1 where x varies from 1 to p + 1 as per Th-5.1 

Here, in ∑ xp – 1 sum of all the terms excluding pp – 1 is also divisible by p. Hence, ∑xp – 1 is also divisible by p 

 

6.1     Converse of the theorem is also true. 

 

As there exists infinitely many primes we can assume (p + 2) is a prime and accordingly p will be either prime 

or a FC-number. 

Say, p is a FC-number & p│X where X = 1p – 1 + 2p – 1 + 3p – 1 + ………+ (p – 1)p – 1 + pp – 1 + (p + 1)p – 1 , where obviously  

(p + 1, p) = 1 

As per Theorem-1 & 4, p must be product of at least 3-primes, say p = αβγ 

Now, α│{1p – 1 + 2p – 1 + 3p – 1 + ………..+ (α – 1)p – 1 + αp – 1 } + {(α + 1)p – 1 + (α + 2)p – 1 + (α + 3)p – 1 + ………..+  

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 
ISSN 2229-5518 

136

IJSER © 2016 
http://www.ijser.org

IJSER



 
 

(2α – 1)p – 1 + (2α)p – 1 } + …….. βγ brackets. 

  α│{1p – 1 + 2p – 1 + 3p – 1 + ………+ (p – 1)p – 1 + pp – 1 } 

Now, if p│X means α│X   α│(p + 1)p – 1  which is impossible as (p + 1, p) = 1 i.e. (p + 1, α) = 1.  

Hence, p cannot be a composite number obeying Fermat property.    

                                                              p + 1  

So, if it is found that ∑ xp – 1  is divisible by p & p + 2 both then p, p + 2 must be twin primes. 
                                                              x = 1 

*Apart from the twin prime factors X also contains all the prime factors of (p + 1) say αi, i = 1, 2, 3, …. Provided 

p – 1 ≠ k(αi – 1) as per the next theorem. 

It is to be noted that in between twin primes there cannot exist an even number in the form of 2n 

                                                                                                                                                                                                                                                                                   p – 1  

7.    For a prime number p if all the prime factors of (p – 1) are αi, i = 1, 2, 3, …… then X = ∑ xm must be 

divisible by p and all αi provided m ≠ k(p – 1) or k(αi – 1).                                                                                               x = 1 

 

Say p – 1 = αy where α is a prime. 

 α│{1m + 2m + 3m + ……. + (α – 1)m + αm} + {(α + 1)m + (α + 2)m + (α + 3)m + ……. + (2α)m} + …….. y brackets 

 α│{1m + 2m + 3m + ……. + (p – 1)m} where m ≠ k(α – 1) 

 α│X and similarly, for other prime factors of (p – 1) 

 

The following two theorems which are easy to establish are also felt necessary to mention. 

 

8.1   (x p)│xp + (x ± α)p + (x ± 2α)p + ……….. p terms 

8.2   (x p)│xp + (x ± α)p + (x ± 2α)p + ………..up to any odd terms when p is a prime factor of x. 

 

Few examples in favor of theorem 6 & 7 

 

Once again we can redefine clubbing the theorems 6 & 7 as: If p & p + 2 are twin primes where obviously p + 1 

is in the form of 2m3np1n1p2n2……. then p(p + 2).∏(pi)│∑xp – 1, x varies from 1 to p + 1& where there exists at least 

one prime factor y so that ↑(p – 1)y < ↑(pi – 1)y for the existence of pi.  

Let us consider the twin prime (101, 103) where p + 1 = 102 = 2.3.17 & p – 1 = 100 = 2252   

 {↑(100)2 = 2} < {↑(17 – 1)2 = 4}. Hence (101.103.17)│X where X = ∑ x100 , x varies from 1 to 102. 

For all the twin primes of the form (u9, u1) where u9 is in the form of 2(odd) + 1, X is always divisible by 5. 

[ux denotes a prime having unit digit x]. Say the twin prime (59, 61) where ↑(59 – 1)2 = 1 & as 5 is always a 

factor of mid-integer of twin obviously ↑(59 – 1)2 < ↑(5)2 Hence, (59.61.5)│∑x58, x varies from 1 to 60. 

Say the twin prime (137, 139) where 138 = 2.3.23 & {↑(137 – 1)11 = 0} < {↑(23 – 1)11 = 1}.  

Hence, (137.139.23)│∑ x136, x varies from 1 to 138.                                                                                                    p – 1  

It is quite evident that if m is odd, then {prime p & all odd prime factors pi of (p – 1)}│∑ xm as ↑(pi – 1)2 > 0 but ↑(m)2 = 0  
                                                                                                                                                                                                                                                    x = 1    
9         For a prime number p if (m, p) = 1 then 

9.1      p│X where X = 1 + md + (md)2 + (md)3 + ……. (p – 1)/d terms, d is any factor of (p – 1) including one but 

excluding (p – 1) itself, provided (p, md – 1) = 1 

9.2     If d is odd p│Y where Y = 1 – md + (md)2 – (md)3 + ……. (p – 1)/d terms, provided (p, md + 1) = 1  

9.3     p│XY without any condition i.e. only for (m, p) = 1 where m or p ≠ 2 

9.4     If (p, md ± 1) = 1 for d is odd, p│1 + (md)2 + (md)4 + (md)8 ……. (p – 1)/2d terms 

 

We have X = {(md)(p – 1)/d – 1}/(md – 1) = (mp – 1 – 1)/(md – 1)   Hence, p│X for (p, md – 1) = 1 

If d is odd then replacing m by –m we have , Y = - (mp – 1 – 1)/(md + 1)   p│Y for (p, md + 1) = 1 

Now, there cannot exist any common odd factor in between two consecutive even or odd numbers. 

So, p cannot divide md ± 1 both and hence, p│XY without any condition except (m, p) = 1 

e.g. for any prime p, p│1 + m2^(n – k) + {m2^(n – k)}2 + {m2^(n – k)}3 + ….. 2kβ terms where p – 1 = 2nβ & (p, m) = 1, 
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(p, m2^(n – k) – 1) = 1, 0 ≤ k ≤ n   for m = 2 & k = 0, (p, ∏(Fn – 1)) = 1, F denotes the Fermat number. 

Say the prime number 13 where p – 1 = 3.4   

13│(1 + 33 + 36 + 312)(1 – 33 + 36 – 312) where md = 33 or 13│(1 + 73 + 76 + 712) (1 – 73 + 76 – 712) where md = 73 & so on 

Now, multiplying XY we get p│(r2 – 1){1 + r2 + r4 + r8 + …… (p – 1)/2d terms}2 

 p│{1 + r2 + r4 + r8 + …… (p – 1)/2d terms} where r = md for (p, md ± 1) = 1 

 

References: any text book in the field of Number Theory.  

 

Conclusion: I believe that with the help of these newly invented theorems it will be possible to extract many 

more properties of prime numbers. Presently one important question excites our mind regarding existence of other 

prime factors of X in theorem 7 apart from p & all pi. If it exists, say pj-group what is the logic behind its existence? It 

seems pi is a FC-number as a whole i.e. ∏(pj) or product of several FC-numbers i.e. ∏(pj). ∏(pk)….. where some FC-

numbers may contain few primes from pi-group e.g. say pi consists a single prime q1 & pj also consists a single prime q2 

then pq1q2 must be a FC-number as FC-nos. is a product of minimum three primes. If pj consists two primes q2 & q3 then 

either pq2q3 or q1q2q3 or pq1q2q3 is a FC-number. Of course, it needs further investigation to prove.  
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